"""LangGraph single-node graph template. Returns a predefined response. Replace logic and configuration as needed. """ from __future__ import annotations from dataclasses import dataclass from typing import Any, Dict, TypedDict from langgraph.graph import StateGraph from langgraph.runtime import Runtime class Context(TypedDict): """Context parameters for the agent. Set these when creating assistants OR when invoking the graph. See: https://langchain-ai.github.io/langgraph/cloud/how-tos/configuration_cloud/ """ my_configurable_param: str @dataclass class State: """Input state for the agent. Defines the initial structure of incoming data. See: https://langchain-ai.github.io/langgraph/concepts/low_level/#state """ changeme: str = "example" async def call_model(state: State, runtime: Runtime[Context]) -> Dict[str, Any]: """Process input and returns output. Can use runtime context to alter behavior. """ return { "changeme": "output from call_model. " f"Configured with {runtime.context.get('my_configurable_param')}" } # Define the graph graph = ( StateGraph(State, context_schema=Context) .add_node(call_model) .add_edge("__start__", "call_model") .compile(name="New Graph") )