tmp
This commit is contained in:
8
src/agent/__init__.py
Normal file
8
src/agent/__init__.py
Normal file
@@ -0,0 +1,8 @@
|
||||
"""New LangGraph Agent.
|
||||
|
||||
This module defines a custom graph.
|
||||
"""
|
||||
|
||||
from agent.graph import graph
|
||||
|
||||
__all__ = ["graph"]
|
||||
49
src/agent/configuration.py
Normal file
49
src/agent/configuration.py
Normal file
@@ -0,0 +1,49 @@
|
||||
"""Define the configurable parameters for the agent."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field, fields
|
||||
from typing import Annotated, Optional
|
||||
|
||||
from langchain_core.runnables import RunnableConfig, ensure_config
|
||||
|
||||
from agent import prompts
|
||||
|
||||
|
||||
@dataclass(kw_only=True)
|
||||
class Configuration:
|
||||
"""The configuration for the agent."""
|
||||
|
||||
system_prompt: str = field(default=prompts.SYSTEM_PROMPT)
|
||||
"""The system prompt to use for the agent's interactions.
|
||||
|
||||
This prompt sets the context and behavior for the agent.
|
||||
"""
|
||||
|
||||
model_name: Annotated[str, {"__template_metadata__": {"kind": "llm"}}] = (
|
||||
"anthropic/claude-3-5-sonnet-20240620"
|
||||
)
|
||||
"""The name of the language model to use for the agent's main interactions.
|
||||
|
||||
Should be in the form: provider/model-name.
|
||||
"""
|
||||
|
||||
scraper_tool_model_name: Annotated[
|
||||
str, {"__template_metadata__": {"kind": "llm"}}
|
||||
] = "accounts/fireworks/models/firefunction-v2"
|
||||
"""The name of the language model to use for the web scraping tool.
|
||||
|
||||
This model is specifically used for summarizing and extracting information from web pages.
|
||||
"""
|
||||
max_search_results: int = 10
|
||||
"""The maximum number of search results to return for each search query."""
|
||||
|
||||
@classmethod
|
||||
def from_runnable_config(
|
||||
cls, config: Optional[RunnableConfig] = None
|
||||
) -> Configuration:
|
||||
"""Create a Configuration instance from a RunnableConfig object."""
|
||||
config = ensure_config(config)
|
||||
configurable = config.get("configurable") or {}
|
||||
_fields = {f.name for f in fields(cls) if f.init}
|
||||
return cls(**{k: v for k, v in configurable.items() if k in _fields})
|
||||
127
src/agent/graph.py
Normal file
127
src/agent/graph.py
Normal file
@@ -0,0 +1,127 @@
|
||||
"""Define a custom Reasoning and Action agent.
|
||||
|
||||
Works with a chat model with tool calling support.
|
||||
"""
|
||||
|
||||
from datetime import datetime, timezone
|
||||
from typing import Dict, List, Literal, cast
|
||||
|
||||
from langchain_core.messages import AIMessage
|
||||
from langchain_core.prompts import ChatPromptTemplate
|
||||
from langchain_core.runnables import RunnableConfig
|
||||
from langgraph.graph import StateGraph
|
||||
from langgraph.prebuilt import ToolNode
|
||||
|
||||
from agent.configuration import Configuration
|
||||
from agent.state import InputState, State
|
||||
from agent.tools import TOOLS
|
||||
from agent.utils import load_chat_model
|
||||
|
||||
# Define the function that calls the model
|
||||
|
||||
|
||||
async def call_model(
|
||||
state: State, config: RunnableConfig
|
||||
) -> Dict[str, List[AIMessage]]:
|
||||
"""Call the LLM powering our "agent".
|
||||
|
||||
This function prepares the prompt, initializes the model, and processes the response.
|
||||
|
||||
Args:
|
||||
state (State): The current state of the conversation.
|
||||
config (RunnableConfig): Configuration for the model run.
|
||||
|
||||
Returns:
|
||||
dict: A dictionary containing the model's response message.
|
||||
"""
|
||||
configuration = Configuration.from_runnable_config(config)
|
||||
|
||||
# Create a prompt template. Customize this to change the agent's behavior.
|
||||
prompt = ChatPromptTemplate.from_messages(
|
||||
[("system", configuration.system_prompt), ("placeholder", "{messages}")]
|
||||
)
|
||||
|
||||
# Initialize the model with tool binding. Change the model or add more tools here.
|
||||
model = load_chat_model(configuration.model_name).bind_tools(TOOLS)
|
||||
|
||||
# Prepare the input for the model, including the current system time
|
||||
message_value = await prompt.ainvoke(
|
||||
{
|
||||
"messages": state.messages,
|
||||
"system_time": datetime.now(tz=timezone.utc).isoformat(),
|
||||
},
|
||||
config,
|
||||
)
|
||||
|
||||
# Get the model's response
|
||||
response = cast(AIMessage, await model.ainvoke(message_value, config))
|
||||
|
||||
# Handle the case when it's the last step and the model still wants to use a tool
|
||||
if state.is_last_step and response.tool_calls:
|
||||
return {
|
||||
"messages": [
|
||||
AIMessage(
|
||||
id=response.id,
|
||||
content="Sorry, I could not find an answer to your question in the specified number of steps.",
|
||||
)
|
||||
]
|
||||
}
|
||||
|
||||
# Return the model's response as a list to be added to existing messages
|
||||
return {"messages": [response]}
|
||||
|
||||
|
||||
# Define a new graph
|
||||
|
||||
workflow = StateGraph(State, input=InputState, config_schema=Configuration)
|
||||
|
||||
# Define the two nodes we will cycle between
|
||||
workflow.add_node(call_model)
|
||||
workflow.add_node("tools", ToolNode(TOOLS))
|
||||
|
||||
# Set the entrypoint as `call_model`
|
||||
# This means that this node is the first one called
|
||||
workflow.add_edge("__start__", "call_model")
|
||||
|
||||
|
||||
def route_model_output(state: State) -> Literal["__end__", "tools"]:
|
||||
"""Determine the next node based on the model's output.
|
||||
|
||||
This function checks if the model's last message contains tool calls.
|
||||
|
||||
Args:
|
||||
state (State): The current state of the conversation.
|
||||
|
||||
Returns:
|
||||
str: The name of the next node to call ("__end__" or "tools").
|
||||
"""
|
||||
last_message = state.messages[-1]
|
||||
if not isinstance(last_message, AIMessage):
|
||||
raise ValueError(
|
||||
f"Expected AIMessage in output edges, but got {type(last_message).__name__}"
|
||||
)
|
||||
# If there is no tool call, then we finish
|
||||
if not last_message.tool_calls:
|
||||
return "__end__"
|
||||
# Otherwise we execute the requested actions
|
||||
return "tools"
|
||||
|
||||
|
||||
# Add a conditional edge to determine the next step after `call_model`
|
||||
workflow.add_conditional_edges(
|
||||
"call_model",
|
||||
# After call_model finishes running, the next node(s) are scheduled
|
||||
# based on the output from route_model_output
|
||||
route_model_output,
|
||||
)
|
||||
|
||||
# Add a normal edge from `tools` to `call_model`
|
||||
# This creates a cycle: after using tools, we always return to the model
|
||||
workflow.add_edge("tools", "call_model")
|
||||
|
||||
# Compile the workflow into an executable graph
|
||||
# You can customize this by adding interrupt points for state updates
|
||||
graph = workflow.compile(
|
||||
interrupt_before=[], # Add node names here to update state before they're called
|
||||
interrupt_after=[], # Add node names here to update state after they're called
|
||||
)
|
||||
5
src/agent/prompts.py
Normal file
5
src/agent/prompts.py
Normal file
@@ -0,0 +1,5 @@
|
||||
"""Default prompts used by the agent."""
|
||||
|
||||
SYSTEM_PROMPT = """You are a helpful AI assistant.
|
||||
|
||||
System time: {system_time}"""
|
||||
60
src/agent/state.py
Normal file
60
src/agent/state.py
Normal file
@@ -0,0 +1,60 @@
|
||||
"""Define the state structures for the agent."""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
from typing import Sequence
|
||||
|
||||
from langchain_core.messages import AnyMessage
|
||||
from langgraph.graph import add_messages
|
||||
from langgraph.managed import IsLastStep
|
||||
from typing_extensions import Annotated
|
||||
|
||||
|
||||
@dataclass
|
||||
class InputState:
|
||||
"""Defines the input state for the agent, representing a narrower interface to the outside world.
|
||||
|
||||
This class is used to define the initial state and structure of incoming data.
|
||||
"""
|
||||
|
||||
messages: Annotated[Sequence[AnyMessage], add_messages] = field(
|
||||
default_factory=list
|
||||
)
|
||||
"""
|
||||
Messages tracking the primary execution state of the agent.
|
||||
|
||||
Typically accumulates a pattern of:
|
||||
1. HumanMessage - user input
|
||||
2. AIMessage with .tool_calls - agent picking tool(s) to use to collect information
|
||||
3. ToolMessage(s) - the responses (or errors) from the executed tools
|
||||
4. AIMessage without .tool_calls - agent responding in unstructured format to the user
|
||||
5. HumanMessage - user responds with the next conversational turn
|
||||
|
||||
Steps 2-5 may repeat as needed.
|
||||
|
||||
The `add_messages` annotation ensures that new messages are merged with existing ones,
|
||||
updating by ID to maintain an "append-only" state unless a message with the same ID is provided.
|
||||
"""
|
||||
|
||||
|
||||
@dataclass
|
||||
class State(InputState):
|
||||
"""Represents the complete state of the agent, extending InputState with additional attributes.
|
||||
|
||||
This class can be used to store any information needed throughout the agent's lifecycle.
|
||||
"""
|
||||
|
||||
is_last_step: IsLastStep = field(default=False)
|
||||
"""
|
||||
Indicates whether the current step is the last one before the graph raises an error.
|
||||
|
||||
This is a 'managed' variable, controlled by the state machine rather than user code.
|
||||
It is set to 'True' when the step count reaches recursion_limit - 1.
|
||||
"""
|
||||
|
||||
# Additional attributes can be added here as needed.
|
||||
# Common examples include:
|
||||
# retrieved_documents: List[Document] = field(default_factory=list)
|
||||
# extracted_entities: Dict[str, Any] = field(default_factory=dict)
|
||||
# api_connections: Dict[str, Any] = field(default_factory=dict)
|
||||
27
src/agent/utils.py
Normal file
27
src/agent/utils.py
Normal file
@@ -0,0 +1,27 @@
|
||||
"""Utility & helper functions."""
|
||||
|
||||
from langchain.chat_models import init_chat_model
|
||||
from langchain_core.language_models import BaseChatModel
|
||||
from langchain_core.messages import BaseMessage
|
||||
|
||||
|
||||
def get_message_text(msg: BaseMessage) -> str:
|
||||
"""Get the text content of a message."""
|
||||
content = msg.content
|
||||
if isinstance(content, str):
|
||||
return content
|
||||
elif isinstance(content, dict):
|
||||
return content.get("text", "")
|
||||
else:
|
||||
txts = [c if isinstance(c, str) else (c.get("text") or "") for c in content]
|
||||
return "".join(txts).strip()
|
||||
|
||||
|
||||
def load_chat_model(fully_specified_name: str) -> BaseChatModel:
|
||||
"""Load a chat model from a fully specified name.
|
||||
|
||||
Args:
|
||||
fully_specified_name (str): String in the format 'provider/model'.
|
||||
"""
|
||||
provider, model = fully_specified_name.split("/", maxsplit=1)
|
||||
return init_chat_model(model, model_provider=provider)
|
||||
Reference in New Issue
Block a user