Files
agent-chat-ui/agent/agent.tsx
2025-03-02 19:09:59 +01:00

95 lines
2.8 KiB
TypeScript

import { StateGraph, START, END } from "@langchain/langgraph";
import { ChatGoogleGenerativeAI } from "@langchain/google-genai";
import { z } from "zod";
import { GenerativeUIAnnotation, GenerativeUIState } from "./types";
import { stockbrokerGraph } from "./stockbroker";
import { ChatOpenAI } from "@langchain/openai";
async function router(
state: GenerativeUIState,
): Promise<Partial<GenerativeUIState>> {
const routerDescription = `The route to take based on the user's input.
- stockbroker: can fetch the price of a ticker, purchase/sell a ticker, or get the user's portfolio
- weather: can fetch the current weather conditions for a location
- generalInput: handles all other cases where the above tools don't apply
`;
const routerSchema = z.object({
route: z
.enum(["stockbroker", "weather", "generalInput"])
.describe(routerDescription),
});
const routerTool = {
name: "router",
description: "A tool to route the user's query to the appropriate tool.",
schema: routerSchema,
};
const llm = new ChatGoogleGenerativeAI({
model: "gemini-2.0-flash",
temperature: 0,
}).bindTools([routerTool], { tool_choice: "router" });
const prompt = `You're a highly helpful AI assistant, tasked with routing the user's query to the appropriate tool.
You should analyze the user's input, and choose the appropriate tool to use.`;
const recentHumanMessage = state.messages.findLast(
(m) => m.getType() === "human"
);
if (!recentHumanMessage) {
throw new Error("No human message found in state");
}
const response = await llm.invoke([
{ role: "system", content: prompt },
recentHumanMessage,
]);
const toolCall = response.tool_calls?.[0]?.args as
| z.infer<typeof routerSchema>
| undefined;
if (!toolCall) {
throw new Error("No tool call found in response");
}
return {
next: toolCall.route,
};
}
function handleRoute(
state: GenerativeUIState,
): "stockbroker" | "weather" | "generalInput" {
return state.next;
}
async function handleGeneralInput(state: GenerativeUIState) {
const llm = new ChatOpenAI({ model: "gpt-4o-mini", temperature: 0 });
const response = await llm.invoke(state.messages);
return {
messages: [response],
};
}
const builder = new StateGraph(GenerativeUIAnnotation)
.addNode("router", router)
.addNode("stockbroker", stockbrokerGraph)
.addNode("weather", () => {
throw new Error("Weather not implemented");
})
.addNode("generalInput", handleGeneralInput)
.addConditionalEdges("router", handleRoute, [
"stockbroker",
"weather",
"generalInput",
])
.addEdge(START, "router")
.addEdge("stockbroker", END)
.addEdge("weather", END)
.addEdge("generalInput", END);
export const graph = builder.compile();
graph.name = "Generative UI Agent";