Merge pull request #37 from langchain-ai/brace/custom-parsing-anthropic
fix: Custom tool call parsing for anthropic
This commit is contained in:
@@ -7,10 +7,12 @@ import { ChatOpenAI } from "@langchain/openai";
|
||||
import { tripPlannerGraph } from "./trip-planner";
|
||||
import { formatMessages } from "./utils/format-messages";
|
||||
import { graph as openCodeGraph } from "./open-code";
|
||||
import { graph as orderPizzaGraph } from "./pizza-orderer";
|
||||
|
||||
const allToolDescriptions = `- stockbroker: can fetch the price of a ticker, purchase/sell a ticker, or get the user's portfolio
|
||||
- tripPlanner: helps the user plan their trip. it can suggest restaurants, and places to stay in any given location.
|
||||
- openCode: can write code for the user. call this tool when the user asks you to write code`;
|
||||
- openCode: can write code for the user. call this tool when the user asks you to write code
|
||||
- orderPizza: can order a pizza for the user`;
|
||||
|
||||
async function router(
|
||||
state: GenerativeUIState,
|
||||
@@ -21,7 +23,7 @@ ${allToolDescriptions}
|
||||
`;
|
||||
const routerSchema = z.object({
|
||||
route: z
|
||||
.enum(["stockbroker", "tripPlanner", "openCode", "generalInput"])
|
||||
.enum(["stockbroker", "tripPlanner", "openCode", "orderPizza", "generalInput"])
|
||||
.describe(routerDescription),
|
||||
});
|
||||
const routerTool = {
|
||||
@@ -75,7 +77,7 @@ Please pick the proper route based on the most recent message, in the context of
|
||||
|
||||
function handleRoute(
|
||||
state: GenerativeUIState,
|
||||
): "stockbroker" | "tripPlanner" | "openCode" | "generalInput" {
|
||||
): "stockbroker" | "tripPlanner" | "openCode" | "orderPizza" | "generalInput" {
|
||||
return state.next;
|
||||
}
|
||||
|
||||
@@ -107,18 +109,21 @@ const builder = new StateGraph(GenerativeUIAnnotation)
|
||||
.addNode("stockbroker", stockbrokerGraph)
|
||||
.addNode("tripPlanner", tripPlannerGraph)
|
||||
.addNode("openCode", openCodeGraph)
|
||||
.addNode("orderPizza", orderPizzaGraph)
|
||||
.addNode("generalInput", handleGeneralInput)
|
||||
|
||||
.addConditionalEdges("router", handleRoute, [
|
||||
"stockbroker",
|
||||
"tripPlanner",
|
||||
"openCode",
|
||||
"orderPizza",
|
||||
"generalInput",
|
||||
])
|
||||
.addEdge(START, "router")
|
||||
.addEdge("stockbroker", END)
|
||||
.addEdge("tripPlanner", END)
|
||||
.addEdge("openCode", END)
|
||||
.addEdge("orderPizza", END)
|
||||
.addEdge("generalInput", END);
|
||||
|
||||
export const graph = builder.compile();
|
||||
|
||||
85
agent/pizza-orderer/index.ts
Normal file
85
agent/pizza-orderer/index.ts
Normal file
@@ -0,0 +1,85 @@
|
||||
import { ChatAnthropic } from "@langchain/anthropic";
|
||||
import { Annotation, END, START, StateGraph } from "@langchain/langgraph";
|
||||
import { GenerativeUIAnnotation } from "../types";
|
||||
import { z } from "zod";
|
||||
import { AIMessage, ToolMessage } from "@langchain/langgraph-sdk";
|
||||
import { v4 as uuidv4 } from "uuid";
|
||||
|
||||
const PizzaOrdererAnnotation = Annotation.Root({
|
||||
messages: GenerativeUIAnnotation.spec.messages,
|
||||
})
|
||||
|
||||
async function sleep(ms = 5000) {
|
||||
return new Promise((resolve) => setTimeout(resolve, ms));
|
||||
}
|
||||
|
||||
const workflow = new StateGraph(PizzaOrdererAnnotation)
|
||||
.addNode("findStore", async (state) => {
|
||||
const findShopSchema = z.object({
|
||||
location: z.string().describe("The location the user is in. E.g. 'San Francisco' or 'New York'"),
|
||||
pizza_company: z.string().optional().describe("The name of the pizza company. E.g. 'Dominos' or 'Papa John's'. Optional, if not defined it will search for all pizza shops"),
|
||||
}).describe("The schema for finding a pizza shop for the user")
|
||||
const model = new ChatAnthropic({ model: "claude-3-5-sonnet-latest", temperature: 0 }).withStructuredOutput(findShopSchema, {
|
||||
name: "find_pizza_shop",
|
||||
includeRaw: true,
|
||||
})
|
||||
|
||||
const response = await model.invoke([
|
||||
{
|
||||
role: "system",
|
||||
content: "You are a helpful AI assistant, tasked with extracting information from the conversation between you, and the user, in order to find a pizza shop for them."
|
||||
},
|
||||
...state.messages,
|
||||
])
|
||||
|
||||
await sleep();
|
||||
|
||||
const toolResponse: ToolMessage = {
|
||||
type: "tool",
|
||||
id: uuidv4(),
|
||||
content: "I've found a pizza shop at 1119 19th St, San Francisco, CA 94107. The phone number for the shop is 415-555-1234.",
|
||||
tool_call_id: (response.raw as unknown as AIMessage).tool_calls?.[0].id ?? "",
|
||||
}
|
||||
|
||||
return {
|
||||
messages: [response.raw, toolResponse]
|
||||
}
|
||||
})
|
||||
.addNode("orderPizza", async (state) => {
|
||||
await sleep(1500);
|
||||
|
||||
const placeOrderSchema = z.object({
|
||||
address: z.string().describe("The address of the store to order the pizza from"),
|
||||
phone_number: z.string().describe("The phone number of the store to order the pizza from"),
|
||||
order: z.string().describe("The full pizza order for the user"),
|
||||
}).describe("The schema for ordering a pizza for the user")
|
||||
const model = new ChatAnthropic({ model: "claude-3-5-sonnet-latest", temperature: 0 }).withStructuredOutput(placeOrderSchema, {
|
||||
name: "place_pizza_order",
|
||||
includeRaw: true,
|
||||
})
|
||||
|
||||
const response = await model.invoke([
|
||||
{
|
||||
role: "system",
|
||||
content: "You are a helpful AI assistant, tasked with placing an order for a pizza for the user."
|
||||
},
|
||||
...state.messages,
|
||||
])
|
||||
|
||||
const toolResponse: ToolMessage = {
|
||||
type: "tool",
|
||||
id: uuidv4(),
|
||||
content: "Pizza order successfully placed.",
|
||||
tool_call_id: (response.raw as unknown as AIMessage).tool_calls?.[0].id ?? "",
|
||||
}
|
||||
|
||||
return {
|
||||
messages: [response.raw, toolResponse]
|
||||
}
|
||||
})
|
||||
.addEdge(START, "findStore")
|
||||
.addEdge("findStore", "orderPizza")
|
||||
.addEdge("orderPizza", END)
|
||||
|
||||
export const graph = workflow.compile()
|
||||
graph.name = "Order Pizza Graph";
|
||||
@@ -13,7 +13,7 @@ export const GenerativeUIAnnotation = Annotation.Root({
|
||||
>({ default: () => [], reducer: uiMessageReducer }),
|
||||
timestamp: Annotation<number>,
|
||||
next: Annotation<
|
||||
"stockbroker" | "tripPlanner" | "openCode" | "generalInput"
|
||||
"stockbroker" | "tripPlanner" | "openCode" | "orderPizza" | "generalInput"
|
||||
>(),
|
||||
});
|
||||
|
||||
|
||||
@@ -16,6 +16,7 @@
|
||||
"@assistant-ui/react-markdown": "^0.8.0",
|
||||
"@assistant-ui/react-syntax-highlighter": "^0.7.2",
|
||||
"@faker-js/faker": "^9.5.1",
|
||||
"@langchain/anthropic": "^0.3.15",
|
||||
"@langchain/core": "^0.3.41",
|
||||
"@langchain/google-genai": "^0.1.10",
|
||||
"@langchain/langgraph": "^0.2.49",
|
||||
|
||||
6418
pnpm-lock.yaml
generated
6418
pnpm-lock.yaml
generated
File diff suppressed because it is too large
Load Diff
@@ -1,5 +1,6 @@
|
||||
import { parsePartialJson } from "@langchain/core/output_parsers";
|
||||
import { useStreamContext } from "@/providers/Stream";
|
||||
import { Checkpoint, Message } from "@langchain/langgraph-sdk";
|
||||
import { AIMessage, Checkpoint, Message } from "@langchain/langgraph-sdk";
|
||||
import { getContentString } from "../utils";
|
||||
import { BranchSwitcher, CommandBar } from "./shared";
|
||||
import { MarkdownText } from "../markdown-text";
|
||||
@@ -7,6 +8,7 @@ import { LoadExternalComponent } from "@langchain/langgraph-sdk/react-ui";
|
||||
import { cn } from "@/lib/utils";
|
||||
import { ToolCalls, ToolResult } from "./tool-calls";
|
||||
import { StringParam, useQueryParam } from "use-query-params";
|
||||
import { MessageContentComplex } from "@langchain/core/messages";
|
||||
|
||||
function CustomComponent({
|
||||
message,
|
||||
@@ -44,6 +46,28 @@ function CustomComponent({
|
||||
);
|
||||
}
|
||||
|
||||
function parseAnthropicStreamedToolCalls(content: MessageContentComplex[]): AIMessage["tool_calls"] {
|
||||
const toolCallContents = content.filter((c) => c.type === "tool_use" && c.id);
|
||||
|
||||
return toolCallContents.map((tc) => {
|
||||
const toolCall = tc as Record<string, any>
|
||||
let json: Record<string, any> = {};
|
||||
if (toolCall?.input) {
|
||||
try {
|
||||
json = parsePartialJson(toolCall.input) ?? {}
|
||||
} catch {
|
||||
// Pass
|
||||
}
|
||||
}
|
||||
return {
|
||||
name: toolCall.name ?? "",
|
||||
id: toolCall.id ?? "",
|
||||
args: json,
|
||||
type: "tool_call",
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
export function AssistantMessage({
|
||||
message,
|
||||
isLoading,
|
||||
@@ -58,11 +82,14 @@ export function AssistantMessage({
|
||||
const thread = useStreamContext();
|
||||
const meta = thread.getMessagesMetadata(message);
|
||||
const parentCheckpoint = meta?.firstSeenState?.parent_checkpoint;
|
||||
const anthropicStreamedToolCalls = Array.isArray(message.content) ? parseAnthropicStreamedToolCalls(message.content) : undefined;
|
||||
|
||||
const hasToolCalls =
|
||||
"tool_calls" in message &&
|
||||
("tool_calls" in message &&
|
||||
message.tool_calls &&
|
||||
message.tool_calls.length > 0;
|
||||
message.tool_calls.length > 0);
|
||||
const toolCallsHaveContents = hasToolCalls && message.tool_calls?.some((tc) => tc.args && Object.keys(tc.args).length > 0);
|
||||
const hasAnthropicToolCalls = !!anthropicStreamedToolCalls?.length;
|
||||
const isToolResult = message.type === "tool";
|
||||
|
||||
return (
|
||||
@@ -76,7 +103,9 @@ export function AssistantMessage({
|
||||
<MarkdownText>{contentString}</MarkdownText>
|
||||
</div>
|
||||
)}
|
||||
{hasToolCalls && <ToolCalls toolCalls={message.tool_calls} />}
|
||||
{(hasToolCalls && toolCallsHaveContents && <ToolCalls toolCalls={message.tool_calls} />) ||
|
||||
(hasAnthropicToolCalls && <ToolCalls toolCalls={anthropicStreamedToolCalls} />) ||
|
||||
(hasToolCalls && <ToolCalls toolCalls={message.tool_calls} />)}
|
||||
<CustomComponent message={message} thread={thread} />
|
||||
<div
|
||||
className={cn(
|
||||
|
||||
Reference in New Issue
Block a user